A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.

نویسنده

  • Ravindra P Singh
چکیده

Tyrosinase has been immobilized on a Au nanoparticles encapsulated-dendrimer bonded conducting polymer on a glassy carbon electrode for the estimation of catechol. The modified electrode was characterized by cyclic voltammetry and AFM techniques. The principle of catechol estimation was based on the reduction of biocatalytically liberated quinone species at +0.2 V versus Ag/AgCl (3 M KCl), with good stability, sensitivity, and featuring a low detection limit (about 0.002 μM) and wide linear range (0.005 μM-120 μM). The electrochemical redox peak of catechol on the GCE/PolyPATT/Den(AuNPs)/tyrosinase was also investigated. A response time of 7 s, reusability up to 5 cycles and a shelf life of more than 2 months under refrigerated conditions were reported. Various parameters influencing biosensor performance have been optimized including pH, temperature, and applied potential. The utility and application of this nanobiosensor was tested in a real water samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nanoparticles-enhanced amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes.

An amperometric biosensor for the determination of catechol was developed by immobilizing tyrosinase (tyr) on gold nanoparticles (AuNPs) and a (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel three-dimensional network film-modified gold electrode. The AuNPs self-assembled in a sol-gel network provided an excellent microenvironment for an enzymatic reaction between tyrosinase and the substrate...

متن کامل

Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles.

Dendrimer-encapsulated Au nanoparticles comprised of an average of 147 atoms were synthesized and immobilized on a glassy carbon electrode. A one-atom-thick shell of Cu was added to the Au core by electrochemical underpotential deposition, and then this shell was replaced with Pt by galvanic exchange. The results indicate that this synthetic approach leads to well-defined core/shell nanoparticl...

متن کامل

DNA Biosensor for Determination of 5-Fluorouracil based on Gold Electrode Modified with Au and Polyaniline Nanoparticles and FFT Square Wave Voltammetry

In the present study, a new biosensor for 5-Fluorouracil was described using modified goldelectrode and Fast Fourier transform square wave voltammetry (FFT SWV). Calf thymus DNAimmobilization was on a gold electrode decorated with polyaniline and gold nanoparticles. Theelectrochemical characteristics of the electrodes were investigated by cyclic voltammetry, andelectroch...

متن کامل

Bimetallic palladium-gold dendrimer-encapsulated catalysts.

The synthesis, characterization, and catalytic properties of 1-3 nm-diameter bimetallic PdAu dendrimer-encapsulated catalysts are reported. Both alloy and core/shell PdAu nanoparticles were prepared. The catalytic hydrogenation of allyl alcohol was significantly enhanced in the presence of the alloy and core/shell PdAu nanoparticles as compared to mixtures of single-metal nanoparticles.

متن کامل

Electrodeposition of anionic, cationic and nonionic surfactants and gold nanoparticles onto glassy carbon electrode for catechol detection

Three surfactants were selected to modify glassy carbon electrode including sodiumdodecylbenzenesulfonate, Tween 80 and cetyltrimethylammonium bromide. The obtained nano-Au/surfactant/GCEs were characterized with scanning electron microscopy and electrochemicaltechniques. Electrochemical behavior of catechol at the nano-Au/surfactant/GCE was thoroughlyinvestigated for mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 136 6  شماره 

صفحات  -

تاریخ انتشار 2011